Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587024

ABSTRACT

The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.

3.
Cell Biochem Funct ; 42(3): e3991, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532652

ABSTRACT

At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.


Subject(s)
DNA Damage , DNA , Temperature , Mutagenesis
4.
Appl Microbiol Biotechnol ; 108(1): 236, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407656

ABSTRACT

To elucidate the significant influence of microorganisms on geographically dependent flavor formation by analyzing microbial communities and volatile flavor compounds (VFCs) in cigar tobacco leaves (CTLs) obtained from China, Dominica, and Indonesia. Microbiome analysis revealed that the predominant bacteria in CTLs were Staphylococcus, Aerococcus, Pseudomonas, and Lactobacillus, while the predominant fungi were Aspergillus, Wallemia, and Sampaiozyma. The microbial communities of CTLs from different origins differed to some extent, and the diversity and abundance of bacteria were greater than fungi. Metabolomic analysis revealed that 64 VFCs were identified, mainly ketones, of which 23 VFCs could be utilized to identify the geographical origins of CTLs. Sixteen VFCs with OAV greater than 1, including cedrol, phenylacetaldehyde, damascone, beta-damascone, and beta-ionone, play important roles in shaping the flavor profile of CTLs from different origins. Combined with the correlation analysis, bacterial microorganisms were more closely related to key VFCs and favored a positive correlation. Bacillus, Vibrio, and Sphingomonas were the main flavor-related bacteria. The study demonstrated that the predominant microorganisms were essential for the formation of key flavor qualities in CTLs, which provided a theoretical reference for flavor control of CTLs by microbial technology. KEY POINTS: • It is the high OAV VFCs that determine the flavor profile of CTLs. • The methylerythritol phosphate (MEP) pathway and the carotenoid synthesis pathway are key metabolic pathways for the formation of VFCs in CTLs. • Microbial interactions influence tobacco flavor, with bacterial microorganisms contributing more to the flavor formation of CTLs.


Subject(s)
Bacillus , Tobacco Products , Norisoprenoids , Correlation of Data , Nicotiana
5.
J Agric Food Chem ; 72(10): 5325-5338, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38275134

ABSTRACT

Lacto-N-neotetraose (LNnT) is a neutral human milk oligosaccharide with important biological functions. However, the low LNnT productivity and the incomplete conversion of the intermediate lacto-N-tetraose II (LNT II) currently limited the sustainable biosynthesis of LNnT. First, the LNnT biosynthetic module was integrated in Escherichia coli. Next, the LNnT export system was optimized to alleviate the inhibition of intracellular LNnT synthesis. Furthermore, by utilizing rate-limiting enzyme diagnosis, the expressions of LNnT synthesis pathway genes were finely regulated to further enhance the production yield of LNnT. Subsequently, a strategy of cofermentation using a glucose/glycerol (4:6, g/g) mixed feed was employed to regulate carbon flux distribution. Finally, by overexpressing key transferases, LNnT and LNT II titers reached 112.47 and 7.42 g/L, respectively, in a 5 L fermenter, and 107.4 and 2.08 g/L, respectively, in a 1000 L fermenter. These are the highest reported titers of LNnT to date, indicating its significant potential for industrial production.


Subject(s)
Escherichia coli , Glycerol , Humans , Glycerol/metabolism , Escherichia coli/metabolism , Oligosaccharides/metabolism , Milk, Human/metabolism
6.
Bioresour Technol ; 394: 130265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160850

ABSTRACT

The over-reliance on fossil fuels and resultant environmental issues necessitate sustainable alternatives. Microbial fermentation of biomass for malic acid production offers a viable, eco-friendly solution, enhancing resource efficiency and minimizing ecological damage. This review covers three core aspects of malic acid biorefining: feedstocks, microbial strains, and metabolic pathways. It emphasizes the significance of utilizing biomass sugars, including the co-fermentation of different sugar types to improve feedstock efficiency. The review discusses microbial strains for malic acid fermentation, addressing challenges related to by-products from biomass breakdown and strategies for overcoming them. It delves into the crucial pathways and enzymes for malic acid production, outlining methods to optimize its metabolism, focusing on enzyme regulation, energy balance, and yield enhancement. These insights contribute to advancing the field of consolidated bioprocessing in malic acid biorefining.


Subject(s)
Malates , Sugars , Fermentation , Malates/metabolism , Metabolic Networks and Pathways , Biomass
8.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686066

ABSTRACT

Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS) in rice. Furthermore, all four homologs of rice DMR6-like proteins were identified to predominantly carry the enzyme activity of SA 5-hydroxylase (S5H), negatively regulate rice broad-spectrum resistance, and cause the loss of function of these OsDMR6s, leading to increased resistance to rice blast and bacterial blight (BB). Here, we curiously found that an OsF3H04g knock-out mutant created by T-DNA insertion, osf3h04g, was remarkedly susceptible to BLS and BB and showed an extreme reduction in SA content. OsF3H04g knock-out rice lines produced by gene-editing were mildly susceptible to BLS and reduced content of SA. To explore the susceptibility mechanism in OsF3H04g loss-of-function rice lines, transcriptome sequencing revealed that another homolog, OsS3H, had induced expression in the loss-of-function OsF3H04g rice lines. Furthermore, we confirmed that a great induction of OsS3H downstream and genomically adjacent to OsF3H04g in osf3h04g was primarily related to the inserted T-DNA carrying quadruple enhancer elements of 35S, while a slight induction was caused by an unknown mechanism in gene-editing lines. Then, we found that the overexpression of OsS3H increased rice susceptibility to BLS, while gene-editing mediated the loss-of-function OsS3H enhanced rice resistance to BLS. However, the knock-out of both OsF3H04g and OsS3H by gene-editing only neutralized rice resistance to BLS. Thus, we concluded that the knock-out of OsF3H04g activated the expression of the OsS3H, partially participating in the susceptibility to BLS in rice.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Mixed Function Oxygenases , Oryza , Plant Diseases , Transcriptional Activation , Xanthomonas , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Gene Knockout Techniques , Disease Resistance/genetics , Gene Editing , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Mixed Function Oxygenases/genetics , Salicylic Acid/metabolism , Xanthomonas/pathogenicity
9.
Nanoscale ; 15(35): 14543-14550, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37609952

ABSTRACT

Abnormal melanin overproduction can result in hyperpigmentation syndrome in human skin diseases and enzymatic browning of fruits and vegetables. Recently, our group found that Keggin-type polyoxometalates (POMs) can efficiently inhibit tyrosinase activity. However, it remains unclear whether Keggin-type POMs exhibit optimal effects in vivo. Additionally, the inhibitory effect and mechanism of action of POMs on cellular tyrosinase activity and melanogenesis have been rarely reported. Here we demonstrate that our screened and synthesised PMo11Zn and GaMo12 show superior inhibitory effects on melanin formation as well as inhibition of cellular tyrosinase activity compared to other Keggin-type POMs. Intriguingly, we reveal that Keggin-type POMs competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue is capable of forming van der Waals, cation-π and hydrogen bonds, resulting in a reversible non-covalent complex formation. Our findings provide valuable insights into the design, synthesis and screening of polyoxometalates as multifunctional metallodrugs and food preservatives against hyperpigmentation.


Subject(s)
Hyperpigmentation , Melanins , Humans , Monophenol Monooxygenase , Amino Acids
10.
Plant Biotechnol J ; 21(12): 2611-2624, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37581303

ABSTRACT

Plants experience numerous biotic stresses throughout their lifespan, such as pathogens and pests, which can substantially affect crop production. In response, plants have evolved various metabolites that help them withstand these stresses. Here, we show that two specialized metabolites in the herbaceous perennial Belamcanda chinensis, tectorigenin and its glycoside tectoridin, have diverse defensive effects against phytopathogenic microorganisms and antifeeding effects against insect pest. We further functionally characterized a 7-O-uridine diphosphate glycosyltransferase Bc7OUGT, which catalyses a novel reversible glycosylation of tectorigenin and tectoridin. To elucidate the catalytic mechanisms of Bc7OUGT, we solved its crystal structure in complex with UDP and UDP/tectorigenin respectively. Structural analysis revealed the Bc7OUGT possesses a narrow but novel substrate-binding pocket made up by plentiful aromatic residues. Further structure-guided mutagenesis of these residues increased both glycosylation and deglycosylation activities. The catalytic reversibility of Bc7OUGT was also successfully applied in an one-pot aglycon exchange reaction. Our findings demonstrated the promising biopesticide activity of tectorigenin and its glycosides, and the characterization and mechanistic study of Bc7OUGT could facilitate the design of novel reversible UGTs to produce valuable glycosides with health benefits for both plants and humans.


Subject(s)
Glycosyltransferases , Isoflavones , Humans , Glycosyltransferases/genetics , Isoflavones/chemistry , Glycosylation , Plants/metabolism , Uridine Diphosphate , Glycosides
11.
J Agric Food Chem ; 71(30): 11555-11566, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467490

ABSTRACT

Lacto-N-neotetraose (LNnT) and lacto-N-tetraose (LNT) are important oligosaccharides found in breast milk and are commonly used as nutritional supplements in infant formula. We used metabolic engineering techniques to optimize the modified Escherichia coli BL21 star (DE3) strain for efficient synthesis of LNnT and LNT using ß-1,4-galactosyltransferase (HpgalT) from Helicobacter pylori and ß-1,3-galactosyltransferase (SewbdO) from Salmonella enterica subsp. salamae serovar, respectively. Further, we optimized the expression of three key genes, lgtA, galE, and HpgalT (SewbdO), to synthesize LNnT or LNT and deleted several genes (ugd, ushA, agp, wcaJ, otsA, and wcaC) to block competition in the UDP-galactose synthesis pathway. The optimized strain produced LNnT or LNT with a titer of 22.07 or 48.41 g/L, respectively, in a supplemented batch culture, producing 0.41 or 0.73 g/L/h, respectively. The strategies used in this study contribute to the development of cell factories for high-level LNnT and LNT and their derivatives.


Subject(s)
Escherichia coli , Metabolic Engineering , Humans , Infant , Female , Escherichia coli/genetics , Escherichia coli/metabolism , Oligosaccharides/metabolism , Milk, Human/metabolism
12.
Microorganisms ; 11(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36838229

ABSTRACT

The probiotic Weizmannia coagulans (W. coagulans) BC2000 can increase the abundance of intestinal transforming ellagic acid (EA) bacteria and inhibit metabolic disorders caused by hyperlipidemia by activating liver autophagy. This study aimed to investigate the inhibitory effects of W. coagulans BC2000 and EA on hyperlipidemia-induced cholesterol metabolism disorders. C57BL/6J mice (n = 10 in each group) were fed a low-fat diet, high-fat diet (HFD), HFD supplemented with EA, HFD supplemented with EA and W. coagulans BC77, HFD supplemented with EA, and W. coagulans BC2000. EA and W. coagulans BC2000 supplementation prevented HFD-induced hypercholesterolemia and promoted fecal cholesterol excretion. Transcriptome analysis showed that primary bile acid biosynthesis in the liver was significantly activated by EA and W. coagulans BC2000 treatments. EA and W. coagulans BC2000 treatment also significantly increased the intestinal Eggerthellaceae abundance and the liver EA metabolites, iso-urolithin A, Urolithin A, and Urolithin B. Therefore, W. coagulans BC2000 supplementation promoted the intestinal transformation of EA, which led to the upregulation of liver bile synthesis, thus preventing hypercholesterolemia.

13.
Foods ; 12(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673393

ABSTRACT

Levilactobacillus brevis strains can be isolated from traditional Chinese pickles and used as the starter cultures to improve the nutritional profiles of fermented juices. Three L. brevis strains (LBG-29, LBG-24, LBD−14) that produce high levels of gamma-aminobutyric acid (GABA; >300 mg/L) were isolated from traditional Chinese pickles. The strains showed tolerance to low pH and high bile salts and exhibited safety in vitro. Litchi juice was fermented using each strain at 37 °C for 48 h. The litchi juice was determined to be a good substrate for fermentation as the process enhanced its functional profile. Overall, cell vitality increased (above 8.7 log10 CFU/mL), the antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) were significantly increased, and the antioxidant capacity of the 2,2'-amino-di(3-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS) was decreased. There was also a significant increase in the GABA and acetic acid content after LBG-29 and LBG-24 fermentation. It was thus determined that the LBG-29 and LBG-24 strains could be used to improve beverage functionality and aid in the development of new products. This is the first report of litchi fermentation using L. brevis as a starter culture. Further research is required to elucidate the functional benefits for the human body and the nutritional and functional properties during its shelf life.

14.
New Phytol ; 238(1): 252-269, 2023 04.
Article in English | MEDLINE | ID: mdl-36631970

ABSTRACT

High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Heterochromatin/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/metabolism , Histone Deacetylases/genetics , Chromatin/metabolism , DNA Methylation/genetics
15.
Clin Respir J ; 17(5): 357-363, 2023 May.
Article in English | MEDLINE | ID: mdl-36508744

ABSTRACT

BACKGROUND: Exhaled nitric oxide (FeNO) is a simple, noninvasive, and reproducible test, and FeNO (50 ml/s) is often used to reflect airway inflammation. The peripheral small airway/alveolar nitric oxide (NO) concentration is derived from the output of NO at multiple flow rates. Concentration of alveolar NO (CANO), which has been reported to reflect peripheral small airway inflammation, may be related to parameters that reflect abnormal small airway function. AIM: This study aims to investigate the relationship among CANO levels, clinical features, and small airway function-related indicators in patients with stable asthma and to provide a simple method for monitoring small airway function in asthma. DESIGN AND METHODS: We recruited 144 patients with well-controlled, stable asthma, including 69 patients with normal small airway function (normal group) and 75 patients with small airway dysfunction (abnormal group). CANO and pulmonary function were measured. RESULTS: CANO was significantly higher in the abnormal group ([7.28 ± 3.25] ppb) than the normal group CANO ([2.87 ± 1.50] ppb). FEF25-75%pred ([55.0 ± 16.5]%), FEF50%pred ([46.4 ± 13.2]%), and FEF75%pred ([41.9 ± 13.1]%) in abnormal group were significantly lower compared with normal group ([89.9 ± 7.5]%), ([80.9 ± 6.8]%), and ([73.8 ± 5.0]%). CANO was negatively correlated and FEF25-75%pred, FEF50%pred, and FEF75%pred (r = -0.87, P < 0.001; r = -0.82, P < 0.001; r = -0.78, P < 0.001). CANO was positively correlated with age (r = 0.27, P = 0.001). The area under the ROC curve was 0.875 for CANO. The optimal cutoff point of 5.3 ppb had sensitivity and specificity values of 72% and 92% in diagnosing small airway dysfunction. CONCLUSION: CANO has diagnostic value for small airway dysfunction, and the optimal cutoff value is 5.3 ppb. However, the diagnostic evidence is still insufficient, so it still needs further exploration for its value in detecting small airway dysfunction.


Subject(s)
Asthma , Nitric Oxide , Humans , Asthma/diagnosis , Lung , Respiratory Function Tests , Inflammation , Breath Tests , Exhalation
16.
BMC Biol ; 20(1): 256, 2022 11 13.
Article in English | MEDLINE | ID: mdl-36372880

ABSTRACT

BACKGROUND: Plants are continuously challenged with biotic stress from environmental pathogens, and precise regulation of defense responses is critical for plant survival. Defense systems require considerable amounts of energy and resources, impairing plant growth, and plant hormones controlling transcriptional regulation play essential roles in establishing the appropriate balance between defense response to pathogens and growth. Chromatin regulators modulating gene transcription are broadly involved in regulating stress-responsive genes. However, which chromatin factors are involved in coordinating hormone signaling and immune responses in plants, and their functional mechanisms, remains unclear. Here, we identified a role of bromodomain-containing protein GTE4 in negatively regulating defense responses in Arabidopsis thaliana. RESULTS: GTE4 mainly functions as activator of gene expression upon infection with Pseudomonas syringe. Genome-wide profiling of GTE4 occupancy shows that GTE4 tends to bind to active genes, including ribosome biogenesis related genes and maintains their high expression levels during pathogen infection. However, GTE4 is also able to repress gene expression. GTE4 binds to and represses jasmonate biosynthesis gene OPR3. Disruption of GTE4 results in overaccumulation of jasmonic acid (JA) and enhanced JA-responsive gene expression. Unexpectedly, over-accumulated JA content in gte4 mutant is coupled with downregulation of JA-mediated immune defense genes and upregulation of salicylic acid (SA)-mediated immune defense genes, and enhanced resistance to Pseudomonas, likely through a noncanonical pathway. CONCLUSIONS: Overall, we identified a new role of the chromatin factor GTE4 as negative regulator of plant immune response through inhibition of JA biosynthesis, which in turn noncanonically activates the defense system against Pseudomonas. These findings provide new knowledge of chromatic regulation of plant hormone signaling during defense responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Ethylenes/pharmacology , Plant Diseases/genetics , Oxylipins/metabolism , Cyclopentanes/metabolism , Salicylic Acid/pharmacology , Plant Growth Regulators/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Immunity , Chromatin/metabolism
17.
Nutrients ; 14(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235858

ABSTRACT

(1) Background: Ellagic acid (EA) acts as a product of gut microbiota transformation to prevent insulin resistance, which is limited by high-fat diet (HFD)-induced dysbiosis. The aim of this study was to investigate the synergistic effects and mechanisms of supplementation with the probiotic Weizmannia coagulans (W. coagulans) on the prevention of insulin resistance by EA; (2) Methods: C57BL/6J mice were divided into five groups (n = 10/group): low-fat-diet group, high-fat-diet group, EA intervention group, EA + W. coagulans BC77 group, and EA + W. coagulans BC2000 group; (3) Result: W. coagulans BC2000 showed a synergistic effect on EA's lowering insulin resistance index and inhibiting high-fat diet-induced endotoxemia. The combined effect of BC2000 and EA activated the autophagy pathway in the mouse liver, a urolithin-like effect. This was associated with altered ß-diversity of gut microbiota and increased Eggerthellaceae, a potential EA-converting family. Ellagic acid treatment alone and the combined use of ellagic acid and W. coagulans BC77 failed to activate the hepatic autophagy pathway; (4) Conclusions: W. coagulans BC2000 can assist EA in its role of preventing insulin resistance. This study provides a basis for the development of EA-rich functional food supplemented with W. coagulans BC2000.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Animals , Autophagy , Diet, High-Fat/adverse effects , Ellagic Acid/metabolism , Ellagic Acid/pharmacology , Liver/metabolism , Mice , Mice, Inbred C57BL
18.
Food Res Int ; 156: 111355, 2022 06.
Article in English | MEDLINE | ID: mdl-35650981

ABSTRACT

In this study, carboxymethyl chitosan (CMCS) and N-acetylneuraminic acid (NeuAc) were used to develop C-NeuAc hydrogels to encapsulate Pediococcus pentosaceus QK-1. The mechanical properties, thermal stability, in vitro degradation, and pH sensitivity of the hydrogel were evaluated. The C-NeuAc concentration required for optimal hydrogel performance was 3% (w/v). Hydrogel swelling behaviour was effectively assessed by Fickian diffusion and Schott's second-order kinetic models. The hydrogel demonstrated excellent biocompatibility and low in vitro cytotoxicity. An in vitro assay revealed that the viability of Pediococcus pentosaceus QK-1 in C-NeuAc had decreased by only 1.41 log (CFU/ mL) after exposure to simulated acidic gastric fluid. Moreover, the survival rate of the encapsulated and free Pediococcus pentosaceus QK-1 cells were 80.1% and virtually zero, respectively, after passage through the gastrointestinal tract. It was empirically determined that low temperature and freeze-drying were the ideal condition and method to ensure storage longevity of the hydrogel-encapsulated probiotic. Hence, C-NeuAc hydrogel is highly desirable as a food-grade probiotic delivery vehicle.


Subject(s)
Chitosan , Hydrogels , Chitosan/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , N-Acetylneuraminic Acid , Pediococcus pentosaceus
19.
New Phytol ; 235(6): 2439-2453, 2022 09.
Article in English | MEDLINE | ID: mdl-35633113

ABSTRACT

RPA2A is a subunit of the conserved heterotrimeric replication protein A (RPA) in Arabidopsis, which is an essential replisome component that binds to single-stranded DNA during DNA replication. RPA2A controls a set of developmental processes, but the underlying mechanism is largely unknown. Here we show that RPA2A represses key flowering genes including FLOWERING LOCUS T (FT), AGAMOUS (AG) and AGAMOUS LIKE 71 (AGL71) to suppress floral transition by cooperating with the PRC2 complex. RPA2A is vigorously expressed in dividing cells and required for correct DNA replication. Mutation of RPA2A leads to early flowering, which is dependent on ectopic expression of key flowering genes including FT molecularly and genetically. RPA2A and PRC2 have common target genes including FT, AG and AGL71 supported using genetic analysis, transcriptome profiling and H3K27me3 ChIP-seq analysis. Furthermore, RPA2A physically interacts with PRC2 components CLF, EMF2 and MSI1, which recruits CLF to the chromatin loci of FT, AG and AGL71. Together, our results show that the replication protein RPA2A recruits PRC2 to key flowering genes through physical protein interaction, thereby repressing the expression of these genes to suppress floral transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatin/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Mutation/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
20.
Food Res Int ; 148: 110570, 2021 10.
Article in English | MEDLINE | ID: mdl-34507724

ABSTRACT

Soybean milk is an economical substitute for dairy products. Pediococcus pentosaceus has been used as a food additive to improve taste, nutrition, and food safety. In this study, four P. pentosaceus strains (CICC 24444, QK-1, MQ-1 and RQ-1) isolated from various food sources and known to exhibit broad-spectrum antibacterial activities were used to ferment soybean milk, and their fermentation characteristics and the properties of the resulting beverages were evaluated. The results revealed that the P. pentosaceus strains can inhibited the growth of five types of pathogenic bacteria (Salmonella enterica subsp. enterica serotype Enteritidis, Yersinia enterocolitica, Shigella dysenteriae, Escherichia coli, and Staphylococcus aureus), and their in vitro survival rates in the simulated stomach and intestinal environments were above 90%, satisfying the probiotic requirements. Isomaltose oligosaccharide was used as a protective agent to resist low-temperature freeze-drying damage and ensure a high survival rate, and P. pentosaceus was directly injected into fermented soymilk. The acidification of fermented soybean milk was the weakest with P. pentosaceus QK-1, and the viable bacterial counts of all strains were stable after 28 days of storage. After fermentation, the antioxidant ability was enhanced. Arginine and ß-alanine levels increased after fermentation, and the adjunct culture of P. pentosaceus QK-1 increased proline levels. Our data indicate that P. pentosaceus QK-1 is a suitable strain for the development of functional plant-based beverages.


Subject(s)
Pediococcus pentosaceus , Probiotics , Animals , Fermentation , Milk , Salmonella
SELECTION OF CITATIONS
SEARCH DETAIL
...